Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072601

RESUMO

Antimicrobial resistance (AMR) is one of the most important health threats globally. The ability to accurately identify resistant bacterial isolates and the individual antimicrobial resistance genes (ARGs) is essential for understanding the evolution and emergence of AMR and to provide appropriate treatment. The rapid developments in next-generation sequencing technologies have made this technology available to researchers and microbiologists at routine laboratories around the world. However, tools available for those with limited experience with bioinformatics are lacking, especially to enable researchers and microbiologists in low- and middle-income countries (LMICs) to perform their own studies. The CGE-tools (Center for Genomic Epidemiology) including ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) was developed to provide freely available easy to use online bioinformatic tools allowing inexperienced researchers and microbiologists to perform simple bioinformatic analyses. The main purpose was and is to provide these solutions for people involved in frontline diagnosis especially in LMICs. Since its original publication in 2012, ResFinder has undergone a number of improvements including improvement of the code and databases, inclusion of point mutations for selected bacterial species and predictions of phenotypes also for selected species. As of 28 September 2021, 820 803 analyses have been performed using ResFinder from 61 776 IP-addresses in 171 countries. ResFinder clearly fulfills a need for several people around the globe and we hope to be able to continue to provide this service free of charge in the future. We also hope and expect to provide further improvements including phenotypic predictions for additional bacterial species.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Bactérias/efeitos dos fármacos , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Análise de Sequência de DNA , Software
2.
J Antimicrob Chemother ; 75(12): 3491-3500, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32780112

RESUMO

OBJECTIVES: WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. METHODS: The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. RESULTS: Genotype-phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype-phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. CONCLUSIONS: WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...